1,279 research outputs found

    Investigating data synchronization in a mobile learning network with handheld devices

    Get PDF
    There were many successful Web-based learning systems built to enhance the effectiveness of institutional teaching over the past decade. Students were benefited in two major aspects: asking questions to their course instructors, and downloading relevant course materials only when Internet/Intranet access is available. Recently, handheld devices integrated with the latest wireless technology are becoming popular. Thus, it is foreseeable that such learning facilities may move beyond the boundary of fixed network connections one day. We considered an interesting proposal to mobilize conventional Web-based learning systems with the integration of handheld devices, and pioneered its prototype implementation in the University of Hong Kong. Besides getting encouraging students' feedbacks, we gained invaluable experience of combining frontier technologies such as the Conduits and Web server technology to solve the data synchronization problems of students' questions distributed among the 'local' databases of handheld devices and the centralized database server.published_or_final_versio

    Identification and Characterization of MicroRNAs in Asiatic Cotton (Gossypium arboreum L.)

    Get PDF
    To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR). The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE) and adjusted MFE (AMFE) and high MFE index (MFEI). Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton

    Microfluidic impedance biosensors for monitoring a single and multiple cancer cells in anticancer drug treatments

    Get PDF
    In this work, we present a novel microfluidic impedance biosensor chip for trapping both a single and multiple cancer cells and monitoring their response to the anti-cancer drug treatment. By designing different sizes of working microelectrodes together with the V-shaped cell capture structures, a single or multiple cells are trapped on the microelectrodes surfaces. In addition, by utilizing the passive pumping method, cells can be trapped and positioned inside the microchannels without the need of using the outer micro pump or syringe. The impedance change induced by the response of cells to the anticancer drug Cisplatin treatment was successfully recorded. The proposed biosensor chip has a great potential for applications in cancer cell research, drug screening, and quantification of cancer cells from various tumor stages. The results of this study open potential research collaborations about development of cost-effective devices and lab-on-chips for early disease detection, studies of cancerous cells and their response to anti-cancer drugs to optimize cancer treatments, characterisation of mechanical properties of cells, new drug delivery mechanisms, and micro and nano manufacturing

    Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes

    Get PDF
    This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordImmune cells exploit reactive oxygen species (ROS) and cationic fluxes to kill microbial pathogens, such as the fungus Candida albicans. Yet, C. albicans is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of neutrophils? We show that simultaneous exposure to oxidative and cationic stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills C. albicans synergistically in vitro. We also show that the high fungicidal activity of human neutrophils is dependent on the combinatorial effects of the oxidative burst and cationic fluxes, as their pharmacological attenuation with apocynin or glibenclamide reduced phagocytic potency to a similar extent. The mechanistic basis for the extreme potency of combinatorial cationic plus oxidative stress—a phenomenon we term stress pathway interference— lies with the inhibition of hydrogen peroxide detoxification by the cations. In C. albicans this causes the intracellular accumulation of ROS, the inhibition of Cap1 (a transcriptional activator that normally drives the transcriptional response to oxidative stress), and altered readouts of the stress-activated protein kinase Hog1. This leads to a loss of oxidative and cationic stress transcriptional outputs, a precipitous collapse in stress adaptation, and cell death. This stress pathway interference can be suppressed by ectopic catalase (Cat1) expression, which inhibits the intracellular accumulation of ROS and the synergistic killing of C. albicans cells by combinatorial cationic plus oxidative stress. Stress pathway interference represents a powerful fungicidal mechanism employed by the host that suggests novel approaches to potentiate antifungal therapy.IMPORTANCE The immune system combats infection via phagocytic cells that recognize and kill pathogenic microbes. Human neutrophils combat Candida infections by killing this fungus with a potent mix of chemicals that includes reactive oxygen species (ROS) and cations. Yet, Candida albicans is relatively resistant to these stresses in vitro. We show that it is the combination of oxidative plus cationic stresses that kills yeasts so effectively, and we define the molecular mechanisms that underlie this potency. Cations inhibit catalase. This leads to the accumulation of intracellular ROS and inhibits the transcription factor Cap1, which is critical for the oxidative stress response in C. albicans. This triggers a dramatic collapse in fungal stress adaptation and cell death. Blocking either the oxidative burst or cationic fluxes in human neutrophils significantly reduces their ability to kill this fungal pathogen, indicating that combinatorial stress is pivotal to immune surveillance.Biotechnology and Biological Sciences Research Council (BBSRC)Wellcome TrustEuropean CommissionNIAI

    Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle

    Get PDF
    Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a pair of isolated flat electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling microscopy to probe local properties of highly tunable twisted bilayer graphene devices and show that the flat bands strongly deform when aligned with the Fermi level. At half filling of the bands, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring a substantially enhanced flat band splitting that we describe within a microscopic model predicting a strong tendency towards nematic ordering. Our results provide insights into symmetry breaking correlation effects and highlight the importance of electronic interactions for all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page

    Characterization of microRNAs Identified in a Table Grapevine Cultivar with Validation of Computationally Predicted Grapevine miRNAs by miR-RACE

    Get PDF
    BACKGROUND: Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1-3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. METHODOLOGY/PRINCIPAL FINDINGS: Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. 'Summer Black'. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of 'Summer Black'. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. CONCLUSION: The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics

    Analysis of Gene Regulatory Networks in the Mammalian Circadian Rhythm

    Get PDF
    Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4–5 hours in rat compared to mouse and 8–12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm

    PPARδ Activation Acts Cooperatively with 3-Phosphoinositide-Dependent Protein Kinase-1 to Enhance Mammary Tumorigenesis

    Get PDF
    Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling

    Analysis of synonymous codon usage in Hepatitis A virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis A virus is the causative agent of type A viral hepatitis, which causes occasional acute hepatitis. Nevertheless, little information about synonymous codon usage pattern of HAV genome in the process of its evolution is available. In this study, the key genetic determinants of codon usage in HAV were examined.</p> <p>Results</p> <p>The overall extent of codon usage bias in HAV is high in <it>Picornaviridae</it>. And the patterns of synonymous codon usage are quite different in HAV genomes from different location. The base composition is closely correlated with codon usage bias. Furthermore, the most important determinant that results in such a high codon bias in HAV is mutation pressure rather than natural selection.</p> <p>Conclusions</p> <p>HAV presents a higher codon usage bias than other members of <it>Picornaviridae</it>. Compositional constraint is a significant element that influences the variation of synonymous codon usage in HAV genome. Besides, mutation pressure is supposed to be the major factor shaping the hyperendemic codon usage pattern of HAV.</p
    • …
    corecore